--- title: Visualization of data distribution Linear R tags: HowTo, CCS, Interactive, EN GA: UA-155999456-1 --- {%hackmd @docsharedstyle/default %} # HowTo: Visualize Your Data ## 1. Using Jupyter Notebook (Python) ### Step 1. Sign in TWCC - If you do not have an account yet, please refer to [Sign Up for TWCC](https://www.twcc.ai/doc?page=register_account) ### Step 2. Create an interactive container - Please refer to [Interactive Container](https://www.twcc.ai/doc?page=container#Creating-interactive-containers) to create an interactive container, and please select TensorFlow for the Image Type. ### Step 3. Connect the container - Use Jupyter Notebook to connect to the container. Add a Python 2 notebook. :::info :book: See [Using Jupyter Notebook](https://www.twcc.tw/doc?page=container#Using-Jupyter-Notebook) ::: ### Step 4. Execute the Linear-Regression program - Copy and paste the following code to Jupyter Notebook ```python= %matplotlib inline Import tensorflow as tf Import numpy as np Import matplotlib.pyplot as plt # Generate 100 points with numpy random numbers X_data = np.random.rand(100).astype(np.float32) Y_data = x_data * 0.1 + 0.3 # Try to find values ​​for W and b that compute y_data = W * x_data + b # (We know that W should be 0.1 and b 0.3, but TensorFlow will # figure that out for us.) W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b # Minimize the mean squared errors. Loss = tf.reduce_mean(tf.square(y - y_data)) Optimizer = tf.train.GradientDescentOptimizer(0.2) Train = optimizer.minimize(loss) # Before starting, initialize the variables. We will 'run' this first. Init = tf.global_variables_initializer() # Launch the graph. Sess = tf.Session() Sess.run(init) # Fit the line. For step in range(201):     Sess.run(train)     If step % 20 == 0:         Print(step, sess.run(W), sess.run(b))         Plt.plot(x_data, y_data, 'ro', label='Original data')         Plt.plot(x_data, sess.run(W) * x_data + sess.run(b), label='Fitted line')         Plt.legend()         Plt.show() # Learns best fit is W: [0.1], b: [0.3] ``` - Click "Run" ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_870bfba1379842da53a3141b0f00b1de.png) ### Step 5. Visualization of data distribution - TensorFlow will slowly find the fitting of weighted values and draw a linear regression line :::warning 0 [-0.7029411] [0.33094117] ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_69a291678ed64bbe9aa0df2f0e6c2842.png) ::: . . :::warning 100 [0.03479815] [0.33622062] ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_bd743b8fc5f90f4230fcabaa11c4a2cd.png) ::: . . :::warning 200 [0.09321669] [0.30376825] ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_bc04f850d71bf8c45ec725c9f5dfbd7a.png) ::: ## 2. Using SSH or Jupyter Notebook (Terminal) :::info :bulb: The following example comes from [TensorFlow Official Tutorial](https://www.tensorflow.org/api_guides/python/regression_examples) ::: ### Step 1. Use SSH or open Jupyter Notebook (Terminal) :::info :book: See [How to Connect](https://www.twcc.ai/doc?page=container#How-to-connect) ::: ### Step 2. Download TensorFlow code from GitHub ```bash= $ git clone https://github.com/tensorflow/tensorflow.git ``` ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_63777d92dfbd9a46a8907d10a06d9c04.png) ### Step 3. Switch the Tensorflow branch to 1.10 ```bash= $ cd tensorflow && git checkout r1.10 ``` ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_711a5b4b62bb245586e487be123bc6df.png) ### Step 4. Switch to the example/regression directory ```bash= $ cd tensorflow/examples/get_started/regression ``` ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_1f55215a700951b67ea8b227bab72b60.png) ### Step 5. Run the example program using Python commands ```bash= $ python linear_regression.py ``` - In the process of computation, the following messages will be displayed: - Check point directory : You may use TensorBoard tool to visualize neural network and analyze training trend diagrams. - The loss values after every 100 iterations can help examine whether it is a convergence Training. ![](https://cos.twcc.ai/SYS-MANUAL/uploads/upload_fc5c85355ff5ddb10f680fb179da076e.png)